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Abstract. In order to calculate the dependence of the electronic structure of singleδ-doped
layers on the area concentrationc of isovalent impurities, the averagedt-matrix approximation
(ATA) is applied to the case of a few impurities within a layer, and generalized to the case
of a few missing impurities in an otherwise completely filled layer. In this way, exact results
for the limits c → 0 andc → 1 are obtained. An interpolation between these limits results in
Green’s functions which allow the calculation ofc-dependent electronic properties. In the case
of GaAs:In, the top of the heavy-hole subband is calculated for a short-range (δ-like) difference
between the host atom (Ga) and the impurity (In) potentials on the basis of a parabolic host
band structure as well as by applying a three-band Hamiltonian. The comparison with the results
from a virtual-crystal approximation proves the latter to describe the subbands well, provided
that single impurities do not bind charge carriers. The subband dispersion for heavy holes,
calculated for AlAs:Ga on the basis of a realistic ten-band Hamiltonian, shows a camel-back
structure caused by the warping of the host heavy-hole band. This structure is proved to result
in a pronounced high-energy peak of the subband density of states, in contrast to its step-like
behaviour in the case of parabolic bands.

1. Introduction

The question of under which circumstances a single isovalent impurity can bind an electron
or hole was considered first by Faulkner [1], and later by Baldereschi and Hopfield [2]
and by Baldereschi [3]. These authors found conditions on the short-range potential of
the isovalent impurity for the existence of bound states. The only known system in which
isovalent impurities act as electron traps is GaP doped with nitrogen at phosphorus sites
(GaP:NP), with a binding energy of about 10 meV [4]. GaP:BiP is the only system that has
been observed to bind a hole [5]. No other isovalent substitutions in III–V semiconductors
yield bound states.

The renewal of interest in isovalent doping is due to the development of modern growth
technologies, providing the possibility of embedding single layers of impurities (also called
monolayers orδ-layers) into a host material. A large number of experiments on various
isovalentδ-doped semiconductors (GaAs:InGa [6–9], InP:AsP [10], GaAs:AlGa [11], and
AlAs:GaAl [11]) have shown surprisingly intense and sharp photoluminescence lines as
compared to those for the bulk host material.

Recently, submonolayers with only a partial filling of a layer with isovalent impurities
have been studied experimentally [11–13]. Even one single monolayer with only 8% In
impurities in GaAs was shown to result in remarkably different optical spectra compared
with those of bulk GaAs [13].

Theoretical investigations by M̈ader and Baldereschi [14, 15] for the case of a completely
filled δ-layer proved that it will always bind an electron or a hole, regardless of the strength
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of the short-range single-impurity potential. The isovalent monolayer introduces 2D bands
within the forbidden gap of the host material, and the carriers in such a 2D band may
subsequently attract carriers of opposite sign. Due to their short-range potential, isovalent
impurities act as efficient scattering centres for excited electron–hole pairs, and enhance the
external quantum efficiency of the system.

The electronic structure of isovalent monolayers is usually interpreted as that of the
limiting case of a thin quantum well [7–9] or by describing the monolayer as a giant
homogeneous planar impurity [16, 14, 17]. The fairly good results obtained by using the
envelope function scheme [8, 9] are unexpected—because the potential induced by the
isovalent impurity layer is not a slowly varying one—and they merit discussion. From
this point of view, the tight-binding calculations of M̈ader [14] and Wilke and Henning
[17], made using a Green’s function theory, are more reliable. All of these theoretical
concepts, however, neglect the effects of the structural disorder resulting from the random
distribution of the impurities in an incompletely filled layer, and could be applied to the
case of an incomplete filling only if the virtual-crystal approximation (VCA) were valid.

The object of the present paper is the calculation of the dependence of the electronic
structure of isovalentδ-doped layers on the area concentrationc of the isovalent impurities,
on the basis of a multiple-scattering theory. Using the methods given in [18, 19] for the
case of charged impurities, we obtain exact results in the limits of low (c → 0) and high
concentration (nearly complete filling,c→ 1).

The standard method for use when performing calculations at arbitraryc is the
coherent potential approximation (CPA) [20, 21] or its simplified version, the Klauder-
V approximation [22], in which so-called multiple-occupancy corrections are neglected.
However, as shown in [19, 23, 24], the self-energyM in both approximations correctly
reproduces the self-energyM|c=0 in the limit of a vanishing impurity concentrationc, but
not its first derivative with respect to the concentration,(dM/dc)|c=0, at energies near
those of the bound states. The same is true in the limitc→ 1. Therefore, we will use an
interpolation formula for the self-energyM, which reproduces correctly both the self-energy
in the low-concentration(c → 0) and high-concentration(c → 1) limits, and also its first
derivatives with respect to the concentration in both limits.

This interpolation formula does not account for impurity density fluctuations, however,
and the densities of states of the impurity bands in this approximation show sharp cut-offs
and no band tails. In this paper we do not attempt to calculate the band tails, but restrict
ourselves to concentration-dependent effects without taking into account pair (and higher)
correlations in the impurity distribution. As a consequence, the influence of possible island
formation of the impurities on the electronic properties is neglected.

The essential input parameter within the theoretical framework used here is the potential
difference between that of a host atom and that of an isovalent impurity. Following the
work of [14, 17], we choose this short-range potential difference to beδ-like in Wannier
space, with a magnitude given by the band offset of a corresponding heterojunction. Such
a choice can be regarded as a first approximation only, and we cannot expect to obtain
subband energies which reproduce experimental results without subsequent adjustment.

This is especially evident in the case of lattice-mismatched systems such as GaAs:In.
In section 2, we present the basic theory of the treatment of two-dimensional disorder,

and calculate the subband self-energies in the low- and high-concentration limits. An inter-
polation formula that applies over the entire concentration range is also presented. In section
3, heavy-hole subbands are calculated on the basis of a parabolic host band structure as
well as by applying a three-band model Hamiltonian. It is proved that a virtual-crystal
approximation reproduces the results well, provided that single impurities do not give rise to
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bound states. In section 4 a realistic calculation of the heavy-hole subband is performed for
AlAs:Ga on the basis of a ten-band tight-binding band structure of the host semiconductor.
It is shown that its dependence on the two-dimensional momentum in the layer shows a
so-called camel-back structure, giving rise to a pronounced peak in the density of states.
Conclusions are presented in the last section.

2. Theory

We consider the one-electron Hamiltonian

H =
∑
n,l

En(l)a
+
n (l)an(l)+

∑
n,ll′

Wn(l, l
′)a+n (l)an(l

′) (1)

where l labels the atomic positionsR(l), and an(l) and a+n (l) are the destruction and
creation operators for an electron or a hole in the bandn at site l. Our main assumption
is that theWn(l, l

′) are independent of the potentialsEn(l). This means that the band
structures of the host semiconductor (e.g. GaAs) and of the semiconductor built up from the
impurities (e.g. InAs) are approximated as being rigidly shifted. Possible lattice mismatches
are neglected as well. TheEn(l) are given by

En(l) = En +1n(l) (2)

where the1n(l) are short-range (δ-like in Wannier space) perturbations by the impurities
at sitesR(l). The corresponding potential matrix elements ink-space are

(nk|V |n′k′) = 1

N

∑
{l}

exp[−i(k − k′) ·R(l)]
∫
u∗n,k(r)v(r)un′,k′(r)

× exp[−i(k − k′) · r] dr

= ρ(k − k′)1nδn,n′ . (3)

The coupling of different bands of the host semiconductor by the impurity potentials
is neglected. The approximation (3) is a slight generalization of the envelope function
approximation; the potential matrix elements1n are allowed to still depend on the band
index n.

The case of a three-dimensional distribution of the impurities within the model given
by (1)–(3) has been well studied (see e.g. [22, 25, 26]), and the basic framework can be
extended easily to a two-dimensional impurity distribution within a doped layer. In this
case, all of the impurities are confined within an (001)-oriented atomic monolayer, which
is chosen to be atz = 0.

2.1. The low-concentration limit,c→ 0

Repeating the corresponding analysis—given e.g. in [25]—we obtain for the single-impurity
t-matrix averaged over all of the configurations of the impurities within the doped layer

〈tn(m)〉 = tn = c1n

1−1nPn(0)
(4)

wherec is the area concentration, andPn(0) = Pn(l, l) are the Green’s functions of the
bandsn of the host semiconductor.

The well-known averagedt-matrix approximation (ATA) for the totalT -matrix of many
impurities then results in the self-energies

M̄n(k,k
′) = Mn(E)δ(k

′
2− k2) = 1

Nz

c1nδ(k
′
2− k2)

1− (1− c)1nP (0)
(5)
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valid for smallc as well as forc ≡ 1.
Here we have used the notationk = (kx, ky, kz) = (k2, kz), where thez-axis is parallel

to the normal of the doped layer.δ(k′2− k2) is a two-dimensionalδ-function ensuring
momentum conservation within the layer, andNz is the number of planes in thez-direction.
We note that the self-energy is not proportional toδ(kz − k′z), and is independent ofkz
and k′z. Hence, it is related to the configuration-averaged Green’s functions of (1) by the
equation

〈Gn(k,k
′)〉 = Pn(k)δ(k − k′)+ Pn(k)M̄n(k,k

′)
∑
k′′z

〈Gn(k
′′,k′)〉 (6)

and not by

〈Gn(k,k
′)〉 = 1

E − εn(k)−Mn(E)
(7)

as in the case of a three-dimensional impurity distribution.

2.2. The high-concentration limit,c→ 1

The case of a few missing impurities in an otherwise filled two-dimensional layer is not as
obvious as thec→ 0 limit.

We need first the exact Green’s functions for the completely filled monolayer in a three-
dimensional crystal, and then we have to apply a modification of the ATA to the case of
missing impurities.

The Green’s functions forc = 1 are given formally by

L = P + PVP + · · · . (8)

The structure factors in (8) are given by

ρ(p) = 1

N

∑
R(i)∈layer

eip·R(i) = 1

Nz
δ(p2).

The expansion (8) then can be summed over, with the result

Ln(k,k
′) = Pn(k)δ(k − k′)

+ Pn(k)
[

1

Nz
1nδ(k2− k′2)

/(
1− 1

Nz
1n

∑
qz

P (k′2, qz)
)]
Pn(k

′). (9)

Additional poles to those ofPn(k) are given by the solutions of the equations

1= 1n

Nz

∑
kz

Pn(k
′
2, kz) =

1n

Nz

∑
kz

1

E − εn(k2, kz)
= 1nPn(k2) (10)

first derived by M̈ader [14]. From (9) we get bound states for everyk2, resulting in the
subband dispersion for each bandn. As noted above, mixing of different bands due to the
impurity potential is neglected. It could easily be included if the non-diagonal potential
term1n,n′ were known.

The case of a few missing impurities in the monolayer (smallr = 1− c) can now be
treated by generalizing the ATA, the potential of the missing impurities being just−1n.

The results for the self-energies corresponding to (5) are

W̄n(k,k
′) = 1

Nz

−r1nδ(k
′
2− k2)

1+ (1− r)1nLn(0)
(11)



Incompletely isovalentδ-doped semiconductors 5325

with

Ln(0) = 1

N

∑
k,k′

Ln(k,k
′) = 1

N2

∑
k2

Pn(k2)

1−1nPn(k2)
(12)

whereN2 is given byN = N2Nz.
These self-energiesW̄n allow the determination of the configurationally averaged

Green’s functions〈Gn(k,k
′)〉 in terms of theLn(k,k′):

〈G〉 = L+ LV̄ L+ · · · = L+ LW̄ 〈G〉
where theV̄ are the potentials due to the missing impurities.

With the help of the expansion (8), we get after some algebra finally

M̄n(k,k
′) = Mn(E,k2)δ(k

′
2− k2)

= 1

Nz

c1nδ(k2− k′2)
1−1nPn(k2)

[
1+1nLn(0)

1+ c1nLn(0)
− 1nPn(k2)

1− (1− c)1nPn(0)

]
. (13)

These self-energies are correct in the limitc→ 1, as well as atc ≡ 0.
For c = 1, the self-energies are simply

Mn(E,k2) = 1

Nz
1n (14)

as expected.
As in the limitc→ 0, theMn(k,k

′) are proportional toδ(k2− k′2), but not toδ(kz−k′z),
leading to equation (6) instead of (7).

2.3. The interpolation formula

For the construction of a suitable interpolation formula, we use the fact that the two
expressions (5) and (13) for the self-energies give the correct limitsc = 0 and c = 1,
as well as the exact first derivatives with respect toc:

Mn|c=0 = 0 (15)
dMn

dc

∣∣∣∣
c=0

= 1

Nz

1n

1−1nPn(0)
(16)

Mn|c=1 = 1

Nz
1n (17)

dMn

dc

∣∣∣∣
c=1

= 1

Nz
1n

[
1+ 1

2
nPn(k2)Pn(0)−1nLn(0)/(1+1nLn(0))

1−1nPn(k2)

]
. (18)

A simple Pad́e approximation to the self-energies

Mn(c) = αn + βnc + γnc2

1+ ηnc (19)

reproduces these limiting values if

αn = Mn|c=0 (20)

βn = dMn

dc

∣∣∣∣
c=0

(21)

γn =
(
−dMn

dc

∣∣∣∣
c=0

+ 2Mn|c=1− dMn

dc

∣∣∣∣
c=1

)/(
dMn

dc

∣∣∣∣
c=1

−Mn|c=1

)
(22)

ηn =
(
(Mn|c=1)

2− dMn

dc

∣∣∣∣
c=0

dMn

dc

∣∣∣∣
c=1

)/(
dMn

dc

∣∣∣∣
c=1

−Mn|c=1

)
. (23)
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This interpolation formula is identical to that derived in [24] in another way. It was proved
there that (19) with (20)–(23) has all of the analytical properties required for a self-energy,
and avoids some shortcomings of a CPA expression; see also [18] and [19].

3. Results

The self-energies obtained are related to the averaged Green’s functions by equation (6). A
one-dimensional Schrödinger equation with the Hamiltonian (1) would result in the equation

Gn(kz, k
′
z) = Pn(kz)δ(kz − k′z)+ Pn(kz)

1n

Nz

∑
k′′z

Gn(k
′′
z , k
′
z) (24)

which, multiplied byδ(k2− k′2), is equivalent to (6).
Hence, the band structure of an isovalentδ-doped semiconductor can be obtained by

solving a one-dimensional Schrödinger equation with the potential replaced by an effective
E- andk2-dependent one. In the case of a full layer, this effective potential, according to
(14), is just1n/Nz, the monolayer being equivalent to one impurity in a one-dimensional
Schr̈odinger equation. Hence, it results in a bound state (for each unperturbed band) for an
arbitrarily small potential, as first observed by Mäder and Baldereschi [14, 15].

Figure 1. Binding energies of heavy holes and electrons in the low-concentration limit,c = 0,
obtained using the approximation of parabolic bands of GaAs as the host material.

In the limiting casec → 0, poles of the〈Gn(k,k
′)〉 additional to those ofPn(k) are

given by

1= 1n

N

∑
k

1

E − εn(k) = 1nPn(0) (25)

which is just the Koster–Slater equation [27] as expected. It results for III–V semiconductors
in bound states only in the cases of GaP:NP [4] and GaP:BiP [5]. We obtained the
dependence of (25) on the strength of the impurity potential within the approximation
of parabolic bands by integrating numerically over the Brillouin zone. Figure 1 shows the
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results for heavy holes and electrons in the case of GaAs. There are no bound states for
reasonable values of1n; in the case of the heavy-hole band,1hh > 8 eV would be required.

Figure 2. Binding energies of heavy holes in the high-concentration limit,c = 1, with different
approximations for the band structure of the host material: the solid curve corresponds to a
parabolic band with the integration extended to infinity; the dotted curve corresponds to a
parabolic band with the integration within the Brillouin zone boundaries; and the dashed curve
gives the results obtained by using a three-band model Hamiltonian. Closed diamond: see the
text.

In the opposite case,c = 1, subbands can be obtained easily for the host semiconductor
dispersion relation

ε(k) = ε(k2)+ h̄
2k2
z

2m∗
. (26)

Equation (10) can be solved analytically, and we obtain, placing the zero of energy at the
top of the valence band and extending the integration in

N−1
z

∑
kz

= a

4π

∫ 2π/a

−2π/a
dkz

to infinity, for electrons for example

Ee = Egap − 2m∗a2

h̄2

(
1e

4

)2

+ εe(k2) (27)

if 1e is negative, in accordance with the standard envelope function result

E = Ei +
h̄2(k2

x + k2
y)

2m∗
. (28)

The effective-mass approximation used, and the extension of the integration to infinity are
not critical, as shown in figure 2. The solid line displays the result corresponding to (27)
for holes. The dotted line corresponds to the parabolic band approximation, but integrating
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(10) within the Brillouin zone boundaries. The dashed line was obtained using a three-band
model Hamiltonian for the uppermost valence bands in a zinc-blende crystal [2], in which
case (10) can be solved analytically fork2 = 0. The single closed diamond refers to an
experimental binding energy ofEb = 23 meV for heavy holes and an appropriate band
offset for strained InAs/GaAs of1hh = 0.277 eV, as given in [9]. The agreement between
the experimental and the theoretical results based on a crude approximation to the real band
structure of the host material is astonishing.

Figure 3. The dependence of the top of the heavy-hole subband in GaAs with the band offset of
strained InAs/GaAs of 0.277 eV on the concentration calculated with the interpolation formula
(19) (triangles). For comparison, the VCA results for the same approximations as in figure 2
(solid, dotted, and dashed curves) are also shown.

Figure 3 shows the dependence of the top of the heavy-hole subband on the impurity
concentrationc for GaAs:In and with1hh = 0.277 eV, as given above. The triangles are
calculated using the interpolation formula (19) and integrating (10) within the Brillouin zone
boundaries (using the parabolic band approximation). The solid, dotted, and dashed lines
correspond to the same approximations for the band structure of the host crystal as were
used to obtain the curves in figure 2, but scaling the strength of the potential1hh with the
help of the VCA (1hh→ c1hh).

The VCA and the interpolation formula for the self-energy give nearly the same results,
except that at high concentrations a small deviation is found which vanishes atc ≡ 1. We
conclude that the use of the numerically simple VCA is fully justified in cases in which
single impurities (c→ 0) do not result in bound states. TheE- andk2-dependences of the
self-energies become important only as regards reproducing the impurity band formation
from bound states of single impurities, as occurs in the case of charged impurities [18, 19].

The calculations resulting in figure 3 were performed with a real self-energy. Its
imaginary part gives rise to finite lifetimes of the charge carriers in the subbands due
to scattering processes which, of course, cannot be described when applying the VCA.
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4. The camel-back structure of the heavy-hole subband dispersion

As shown above, in the case of the absence of bound states due to single impurities, the
subband dispersions can be calculated to a good approximation by solving the VCA equation

1= c1n

a

4π

∫ 2π/a

−2π/a
dkz

1

E − εn(k2, kz)
. (29)

In the case of quadratic dispersion relationsεn(k2, kz) ∼ k2
2, we obtain quadratic subband

dispersionsEn = E0
n +∼k2

2, and, hence, step-like densities of subband states.
The valence bands of the host III–V semiconductors, however, are not parabolic. They

show a warping which can be calculated near the centre of the Brillouin zone, e.g. by the
k · p method. But equation (29) requires integration over a full line of the Brillouin zone,
for which thek · p approximation is not adequate.

Figure 4. Heavy-hole subband dispersion in two different directions for a completely filled
(c = 1) AlAs:Ga layer obtained from an sp3s∗ semiempirical tight-binding Hamiltonian with
1hh = 0.556 eV.

To be specific, we choose the case of a (001)-oriented Ga monolayer in AlAs. This
system was chosen because lattice mismatch can be neglected, and a realistic description in
terms of the model Hamiltonian (1) is adequate. We putc = 1 and take1hh = 0.556 eV
[14]. εhh(k) is obtained from the ten-band effective tight-binding Hamiltonian [28].
Equation (29) is solved numerically, and the two-dimensional density of states of the heavy-
hole subband is obtained by using a tetrahedron method [29, 30]. The results are shown in
figures 4 and 5. Because along the wholekz-line the band structure of the host heavy-hole
band has a local minimum neark2 = 0, the integration in (29) simply adds these structures,
resulting in a similar behaviour of the subband dispersion. Such a two-dimensional camel-
back structure gives rise, however, to a high-energy peak in the density of states instead
of a step-like behaviour, as shown in figure 5. The occurrence of this peak can easily be
understood, in general: for an arbitrary dispersionE = E(|k|) (neglecting the relatively
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Figure 5. The two-dimensional density of states corresponding to figure 4 obtained from a
two-dimensional Brillouin zone integration by using a tetrahedron method. Due to numerical
uncertainties in the solution of equation (29), no values below 4 meV are displayed.

small directional dependence ofk2) with a maximumE = E0 at k = k0 6= 0, we get ind
dimensions by usingkd−1 dk ∼ ρ(E) dE the density of states as follows:

ρ(E) = α kd−1

dE/dk
= α k

d−1

E′(k)
.

With E′(k0) ≈ E′′(k0)(k − k0), we get

ρ(E) = α kd−1
0

E′′(k0)(k − k0)
for E . E0.

E = E0−β(k−k0)
2 results inρ(E) = δ/√E0− E, which corresponds to a one-dimensional

density of states, peaked atE = E0.
The warping-induced camel-back structure of the subbands of the two-dimensional

monolayer simulates a one-dimensional density of states. This result may explain the
unexpectedly intense photoluminescence signals found experimentally even for small area
concentrationsc. This effect could be checked experimentally: in the case of (111)-oriented
isovalent monolayers the integration in (29) has to be carried out along thekx = ky = kz-
line of the Brillouin zone. At all points of this line, the heavy-hole bands of the host III–V
semiconductors are maximal, and no camel-back structure and no peak in the subband
density of states are expected. Assuming comparable dipole matrix elements for allk-
directions, a remarkable loss of photoluminescence intensity should be observed.

We remark, however, that we fully neglected valence band mixing due to non-diagonal
impurity potential matrix elements. A mixing between light- and heavy-hole bands is
known to result in a camel-back structure of subbands in the case of thick quantum wells,
too [31, 32]. This type of camel-back structure was obtained by applying a Luttinger
Hamiltonian that is not diagonal in the band indices, together with a diagonal potential,
which is equivalent, in principle, to a generalization of our approach using a diagonal band
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Hamiltonian with a non-diagonal potential. The Luttinger Hamiltonian approach, however,
cannot be applied to thin quantum wells, which require the knowledge of the host band
structure over the full Brillouin zone. On the other hand, band-mixing effects included
into the theory developed above would increase the number of unknown parameters (non-
diagonal potential matrix elements1nn′), and they would exceed the number of existing
values known so far.

First-principles calculations of the subbands are the only possibility for taking into
account the effects both of warping and of band mixing. We are not aware of any sufficiently
accurate first-principle calculations that result in the expected effect: the accuracy required
is of the order of some meV.

5. Conclusions

The electronic structure of quantum wells and of the limiting case of a filled monolayer as an
ultrathin quantum well can be obtained in the envelope function approximation by solving
a one-dimensional Schrödinger equation. We tried to treat the problem of completely or
incompletely filled monolayers as far as possible exactly, in order to test the applicability
of this method. The treatment was based on the following approximations.

(i) The short-range potential differences between the impurity and host atoms have
been treated asδ-like functions in Wannier space. The corresponding matrix elements have
been allowed to depend on the band index. Interband mixing was not taken into account,
however.

(ii) The hopping matrix elements have been assumed not to depend on the occupation of
the sites by host or by impurity atoms. In the case of thick quantum wells this assumption
is certainly not correct; in the case of an incompletely filled monolayer we believe it to be
tolerable.

(iii) Lattice mismatch has been neglected.
(iv) The multiple-scattering approach used does not account for band tailing. It therefore

neglects, e.g., the influence of island formation within a partially filledδ-layer.

Under these suppositions, expressions for the subband self-energies have been derived
which are, in general,E- andk2-dependent. The following results were obtained.

(i) In the case of weak single-impurity potentials, which are not able to bind charge
carriers, the numerically simple VCA reproduces the results well. The energy and
momentum dependence of the self-energy can be neglected in this case, if we are not
interested in finite-lifetime effects.

(ii) The monolayer, however, binds charge carriers for arbitrarily small potentials, as
stated forc = 1 by Mäder and Baldereschi [14, 15]. In the case of incompletely filled
monolayers there is no threshold concentration for subband formation.

(iii) On the basis of a realistic ten-band tight-binding Hamiltonian describing the host
semiconductor, a pronounced peak in the heavy-hole subband density of states is obtained
for (001)-orientedδ-layers, which is due to the warping of the host semiconductor band
structure, and not due to interband mixing.

The basic assumptions of our approach can be avoided only by making first-principles
band-structure calculations and then performing configurational averaging. We are not aware
of such calculations being available with the required numerical accuracy, of the order of
some meV.
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